

Heat Recovery in Oxy-Fuel Glass Furnaces – A Path to Increased Efficiency and Lower CO₂ Emissions

Matthias Goerisch, Shrikar Chakravarti, Stefan Laux & Martin Adendorff April 22, 2021

Making our world more productive

Linde. Global presence, local support.

- The leading industrial gases and engineering company
- Formed in 2018 with the merger of Linde AG and Praxair, Inc – two world-class companies with nearly 140 years of shared history and successful achievements
- Proven critical project execution knowledge in diverse geographies
- → Best-in-Class Safety Performance

Uniting with a shared Vision, Mission and Strategic Direction, and demonstrating our Values and Behaviors in everything we do

100+

countries

Enabling strong, complementary positions in all key geographies and end markets

~\$15 million charitable giving and sponsorships in 2018

Supporting our communities through contributions and employee volunteerism

2 million+

CUSTOMETS Establishing a more diverse and balanced portfolio

~80,000

employees

Achieving our full potential, individually and collectively

6,500+ active patent assets worldwide

Leading with innovative products, solutions and technologies

RECOGNITION

Dow Jones Sustainability Indices

In Collaboration with RobecoSAM 🐽

4/21/2021 For

Path to Decarbonizing Glass Melting

Oxy-fuel combustion

- Oxygen Supply
- Built on-site oxygen supply system for 1st large oxy-fuel glass furnace
- Installed over 60 VPSAs in glass plants
- Burner Technologies
- Developed 1st low NOx oxy-fuel burner
- Broad portfolio of burners optimized for oxy-fuel furnaces

OPTIMELT[®] Waste Heat Recovery Systems

- ThermoChemical Regenerator (TCR) System
- Reduces energy consumption and CO2 emissions by 20% vs oxy-fuel, 30% vs airregen & 50% vs recuperative
- Smaller regenerators relative to air-regen
- Batch and Cullet Preheating Systems
- Exclusive access to commercially proven technology from Johansson Industries
- Compatible with oxy-H₂ furnaces

Low Carbon Fuels

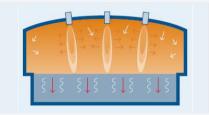
- Hydrogen Supply
- 120+ SMRs
- Largest liquid H₂ capacity
- Electrolyzers: 80+ units (40 MW), JV ITM Linde Electrolysis GmbH
- FOx SMR for blue H₂
- Oxy-H₂ firing to be more economic than air-H₂ firing
- Other low carbon fuels, e.g. biomass, biogas, ethanol
- Refer to Kobayashi, H. et al., "Oxy-Fuel Combustion toward CO2 Neutral Glass Production", Glass Trend Seminar, April 2018

CO₂ Capture

- Multiple carbon capture demonstrations
- Oxy-fuel simplifies CO₂ capture process relative to air-fuel
- Long term CO₂ offtake agreement can improve economic viability

DENA / Digital Practical Workshop Glass Industry 22.04.2021

State of the art technologies. Linde's portfolio for glass melting.



Linde's glass melting portfolio. Increasing process efficiency with oxygen.

Comprehensive OPTIFIRE® Oxy-Fuel Burner Portfolio

Туре	Glass Type			
J	Container, fiberglass, float			
COROX I ୪ II	Container, frit furnaces			
CGM	Composite fiberglass			
JL	Container, tableware, float			
WFB	Container, float			
XD	Fiberglass, container			

Oxyfuel melting

OPTIFIRE® CGM oxyfuel melting

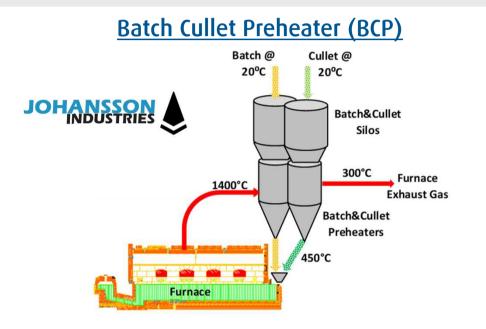
Roof burner for enhanced heat transfer capabilities

- More melting capacity
- Less raw material needed
- Further energy savings
- Improved glass quality

OPTIFIRE® Wide Flame Burners

Wide flame coverage and high luminosity

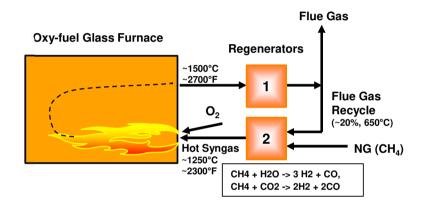
- Low momentum flames that reduce particulate emissions and crown corrosion
- Significantly lower NOx vs conventional oxyfuel burners
- Easy to install and maintain
- Effective at foam mitigation



OPTIFIRE® JL Burner Oxygen staging allows for ultra-low NOx operation

- No burner cooling required
- Works with liquid and gaseous fuels

OPTIMELT® Waste Heat Recovery Systems



- Exclusive agreement technology from Johansson Industries
- Several commercial references with multinational glass companies (US and EU)
- Energy savings of ~10 25% depending on cullet only or batch and cullet preheating

DENA / Digital Practical Workshop Glass Industry 22.04.2021

Thermochemical Regenerator (TCR)

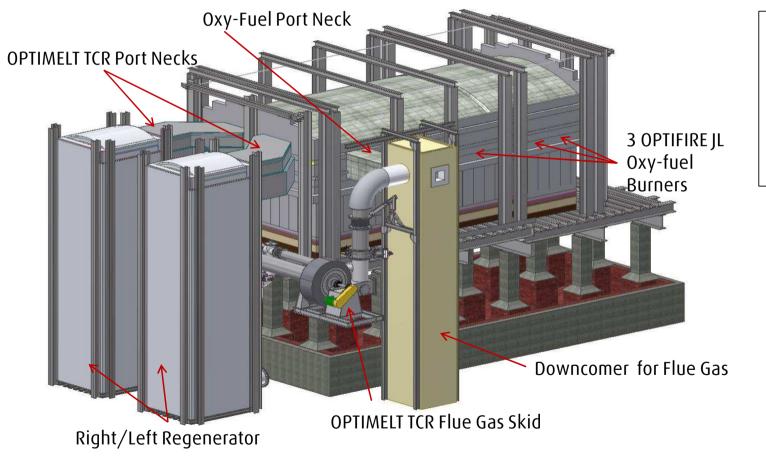
- Regenerative non-catalytic reforming of natural gas using high furnace operating temperatures
- Technology owned by Linde
- Two commercial references in Mexico and Europe
- Energy savings of ~15 25% depending on multiple factors

"LIFE OPTIMELT" Program for Tableware Furnace at Libbey, Leerdam

https://lifeoptimelt.com/pdf/Life-Optimelt-a4-EN.pdf

DENA / Digital Practical Workshop Glass Industry 22.04.2021

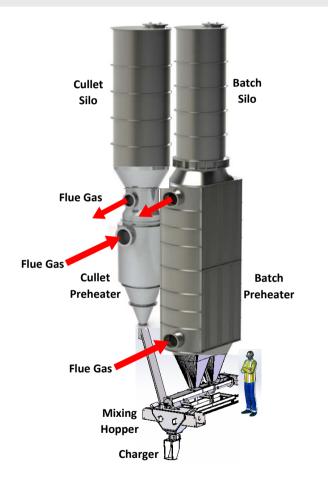
The Program's Results


A considerable reduction in emissions has been achieved at Libbey's factory in Leerdam. The innovative OPTIMELT™ Technology has been implemented in oven L1 at Leerdam's glass plant, with a capacity of 80 tons of glass/day, replacing two old 40 tons of glass/day furnaces.

Natural Gas consumption dropped by 48% = 131,238 GJ / year equivalent to the power produced by 4 super modern wind turbines / year = Heating of 2750 houses / year.

- CO₂ emissions dropped by 47% = 6940 tons / year.
 Equivalent to the CO₂ emitted by 4,500 cars / year.
- NOx emissions dropped by 86% = 117 tons / year.
 Equivalent to the NOx emitted by 11.700 cars / year.
- SOx emissions dropped by 80% = 35 tons / year.
 Equivalent to the SOx emitted by 140.000 cars / year.

Furnace L1 with OPTIMELT TCR at Libbey Leerdam (Netherlands)

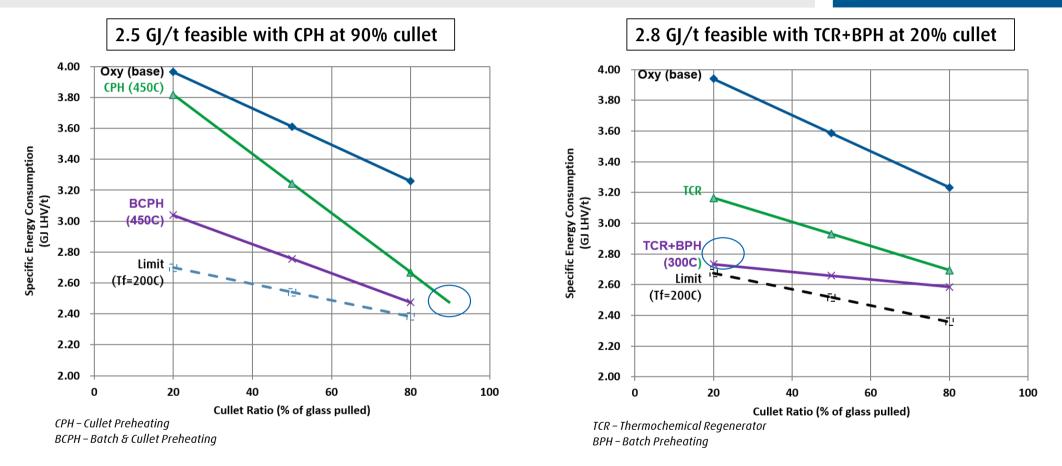

Dual Firing Systems
 1. TCR Syngas Firing
 2. Oxy-fuel Cross Firing

 Programmed switching of two firing modes

Batch Cullet Preheating System

- Separate Batch & Cullet Preheaters
- Direct contact heat exchange
- Batch & Cullet preheated to 450°C
- Substantially improves waste heat recovery
- Relative to BCP Systems for air-fuel furnaces
 - Smaller sized modules
 - Reduced gas flow to ceramic filter by 75%
 - No air dilution required
- Benefits
 - 20%+ fuel, oxygen savings
 - Faster melting of batch / cullet mixture shortens batch line
 - Potential to increase pull rate similar to electric boost
 - Better glass redox control

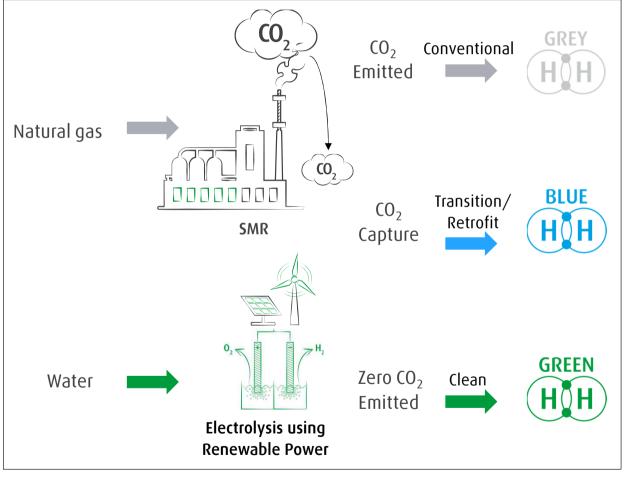
Oxyfuel with Batch/Cullet Preheater (BPH/CPH) Commercial Installation Summary



Location	Pull Rate (t/d)	Year Installed (BPH/CPH)	Glass	Cullet Ratio	Cullet Rate (t/d)	
US	250	1997 (CPH)	Flint	50%	130	
US	330	2011 (BCPH)	Flint	50%	160	
Еигоре	270	2014 (CPH)	Flint	50%	135	
Еигоре	170	2015 (CPH)	Flint	80%	140	
Europe	410^	2016 (CPH)	Green/ Amber	75%	310	^Two identical CPHs installed
Europe	340	2017 (CPH)	Flint	70%	240	

- Multiple references with multinational glass companies
- Demonstrated energy savings of 11 15% with CPH and 20% with batch cullet preheater (BCPH) vs oxy-fuel

Energy Consumption and Heat Recovery Options: CPH, BCPH, BPH and TCR (Oxy-Fuel Fired Container Furnace at 350 mTPD with 1000 kW electric boost)



*Specific energy consumption includes fuel + 0.25 GJ/t of electric boost.

Linde

Linde activities: H₂ for Glass

- Development of hydrogen fired oxyfuel burners
 - Testing underway at Combustion Labs in US and Germany
- External collaborations
 - CelSian R&D Projects (Glass industry)
 - Heat transfer from H2-rich flames in glass tanks
 - Effects of H2-rich combustion on foam and on heat transfer to glass melts
 - DNV (GL) Project (Glass, steel, ceramic industries)
 - H2 as a fuel for industrial heating processes
- OPTIMELT[®] Waste Heat Recovery technologies
 - Compatible with oxy-H2 furnaces
 - Bridge to future with H2 or blends of H2-NG
- Clean H2 production
 - Blue H2: SMR + CO2 capture
 - Diverse portfolio of SMR & CO2 capture technologies
 - Green H2: PEM Electrolysis
 - ITM Linde Electrolysis JV between ITM Power and Linde Engineering

DENA / Digital Practical Workshop Glass Industry 22.04.2021

Making our world more productive

Thank you for your attention.

Matthias Görisch

Linde GmbH Gases Division Vogelweiherstr. 73 90441 Nürnberg

Tel.: +49 911 4238-175 E-Mail: matthias.goerisch@linde.com Internet: www.lindeus.com/industries/glass/optimelt